Неопределённых коэффициентов метод - ορισμός. Τι είναι το Неопределённых коэффициентов метод
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Неопределённых коэффициентов метод - ορισμός

МЕТОД НАХОЖДЕНИЯ КОЭФФИЦИЕНТОВ ПУТЁМ ПРИНЯТИЯ ИХ ЗА НЕИЗВЕСТНУЮ, СОСТАВЛЕНИЯ УРАВНЕНИЙ НА НИХ И ПОСЛЕДУЮЩЕГО ИХ РЕШЕНИЯ
Метод неопределенных коэффициентов

Неопределённых коэффициентов метод      

метод, применяемый в математике для отыскания коэффициентов выражений, вид которых заранее известен. Так, например, на основании теоретических соображений дробь

может быть представлена в виде суммы

где А, В и С - коэффициенты, подлежащие определению. Чтобы найти их, приравнивают второе выражение первому:

и, освобождаясь от знаменателя и собирая слева члены с одинаковыми степенями х, получают:

(А + В + С) х2 + (В - С) х - А = 3x2 - 1.

Так как последнее равенство должно выполняться для всех значений х, то коэффициенты при одинаковых степенях х справа и слева должны быть одинаковыми. Т. о., получаются три уравнения для определения трёх неизвестных коэффициентов: А + В + С = 3, В - С = 0, А = 1, откуда А = В = С = 1. Следовательно,

справедливость этого равенства легко проверить непосредственно. Пусть ещё нужно представить дробь

в виде

где А, В, С и D - неизвестные рациональные коэффициенты. Приравниваем второе выражение первому

или, освобождаясь от знаменателя, вынося, где можно, рациональные множители из-под знака корней и приводя подобные члены в левой части, получаем:

Но такое равенство возможно лишь в случае, когда равны между собой рациональные слагаемые обеих частей и коэффициенты при одинаковых радикалах. Т. о., получаются четыре уравнения для нахождения неизвестных коэффициентов А, В, С и D: А - 2B + 3C = 1, -А + В + 3D = 1, A + C - 2D = -1, В - С + D = 0, откуда A = 0, В = -1/2, С = 0, D = 1/2, т. е.

В приведённых примерах успех Н. к. м. зависел от правильного выбора выражений, коэффициенты которых отыскивались. Если бы в последнем примере вместо выражения

было взято выражение

то, рассуждая, как и выше, получили бы для трёх коэффициентов А, В и С четыре уравнения А - 2В + 3С = 1, -A - B = 1, A + C = -1, В - С = 0, которым нельзя удовлетворить никаким выбором чисел А, В и С.

Особенно важны применения Н. к. м. к задачам, в которых число неизвестных коэффициентов бесконечно. К ним относятся задача деления степных рядов, задача нахождения решения дифференциального уравнения в виде степенного ряда и др. Пусть, например, нужно найти решение дифференциального уравнения у" + ху = 0 такое, что у = 0 и y' = 1 при х = 0. Из теории дифференциальных уравнений следует, что такое решение существует и имеет вид степенного ряда

у = х + c2x2 + c3x3 + c4x4 + c5x5 + ․․․.

Подставляя это выражение вместо у в правую часть уравнения, а вместо y" - выражение

2c2 + 3·2с3х + 4·3с4х2 + 5·4с5х3 + ․․․,

затем, умножая на х и соединяя члены с одинаковыми степенями х, получают

2c2 + 3·2c3x + (1 + 4·3c4) x2 + (c2 + 5·4c5) x3 + ․․․ = 0,

откуда при определении неизвестных коэффициентов получается бесконечная система уравнений: 2c2 = 0; 3·2с3 = 0; 1 + 4·3c4 = 0; c2 + 5·4c5 = 0;...

Решая последовательно эти уравнения,

т. е.

Лит.: Смирнов В. И., Курс высшей математики, т. 1, 23 изд., М., 1974; т. 2, 20 изд., М., 1967; Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959.

Метод неопределённых коэффициентов         
Метод неопределённых коэффициентовметод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
Метод (программирование)         
В ПРОГРАММИРОВАНИИ - ФУНКЦИЯ ИЛИ ПРОЦЕДУРА, СВЯЗАННАЯ С КЛАССОМ
Метод (объектно-ориентированное программирование); Метод (языки программирования); Функция-член
Ме́тод в объектно-ориентированном программировании — это функция или процедура, принадлежащаяПод принадлежностью подразумевается, что метод явно ассоциирован с обработкой определённого класса объектов.

Βικιπαίδεια

Метод неопределённых коэффициентов

Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций. Указанная линейная комбинация берётся с неизвестными коэффициентами, которые определяются тем или иным способом из условий рассматриваемой задачи. Обычно для них получается система алгебраических уравнений.